Auditory Neural Prostheses – A Window to the Future
نویسنده
چکیده
Hearing loss is one of the commonest congenital anomalies to affect children world-over. The incidence of congenital hearing loss is more pronounced in developing countries like the Indian sub-continent, especially with the problems of consanguinity. Hearing loss is a double tragedy, as it leads to not only deafness but also language deprivation. However, hearing loss is the only truly remediable handicap, due to remarkable advances in biomedical engineering and surgical techniques. Auditory neural prostheses help to augment or restore hearing by integration of an external circuitry with the peripheral hearing apparatus and the central circuitry of the brain. A cochlear implant (CI) is a surgically implantable device that helps restore hearing in patients with severe-profound hearing loss, unresponsive to amplification by conventional hearing aids. CIs are electronic devices designed to detect mechanical sound energy and convert it into electrical signals that can be delivered to the cochlear nerve, bypassing the damaged hair cells of the cochlea. The only true prerequisite is an intact auditory nerve. The emphasis is on implantation as early as possible to maximize speech understanding and perception. Bilateral CI has significant benefits which include improved speech perception in noisy environments and improved sound localization. Presently, the indications for CI have widened and these expanded indications for implantation are related to age, additional handicaps, residual hearing, and special etiologies of deafness. Combined electric and acoustic stimulation (EAS / hybrid device) is designed for individuals with binaural lowfrequency hearing and severe-to-profound high-frequency hearing loss. Auditory brainstem implantation (ABI) is a safe and effective means of hearing rehabilitation in patients with retrocochlear disorders, such as neurofibromatosis type 2 (NF2) or congenital cochlear nerve aplasia, wherein the cochlear nerve is damaged or absent on both sides and hence, a cochlear implant (CI) would be ineffective. In such patients, the brainstem implant bypasses the damaged / absent cochlear nerves and directly stimulates the cochlear nucleus in the brainstem. The auditory midbrain implant (AMI) has been designed for stimulation of the auditory midbrain, particularly the central nucleus of inferior colliculus (ICC). It is used especially in patients with large neurofibromatosis type 2 (NF2) wherein tumor induced damage to the brainstem/cochlear nucleus often coexists. The efficacy and safety of auditory neural prostheses is well proven. Advancements in technology will enhance the benefit provided by these prostheses.
منابع مشابه
Comparison of the Pediatric Cochlear Implantation Using Round Window and Cochleostomy
Introduction: Cochlear implantation (CI) is now regarded as a standard treatment for children with severe to profound sensor neural hearing loss. This study aimed to compare the efficacy of the round window approach (RWA) and standard cochleostomy approach (SCA) in the preservation of residual hearing after CI in pediatric patients. Materials and Methods: This double-blind ran...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملOverview and Challenges of Implantable Auditory Prostheses
ntil the middle of 20th century it was believed that a full understanding of the anatomy and physiology of the ear and the neural system is required for achieving successful auditory prostheses devices that can substitute the clever and subtle functions of the middle and inner ears and the associated neural structures. Surprisingly however very quickly auditory implants happened to become succe...
متن کامل